本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt((48x - 48){\frac{1}{x}}^{2})sin(x)cos(x)tan(x) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin(x)cos(x)tan(x)sqrt(\frac{48}{x} - \frac{48}{x^{2}})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(x)cos(x)tan(x)sqrt(\frac{48}{x} - \frac{48}{x^{2}})\right)}{dx}\\=&cos(x)cos(x)tan(x)sqrt(\frac{48}{x} - \frac{48}{x^{2}}) + sin(x)*-sin(x)tan(x)sqrt(\frac{48}{x} - \frac{48}{x^{2}}) + sin(x)cos(x)sec^{2}(x)(1)sqrt(\frac{48}{x} - \frac{48}{x^{2}}) + \frac{sin(x)cos(x)tan(x)(\frac{48*-1}{x^{2}} - \frac{48*-2}{x^{3}})*\frac{1}{2}}{(\frac{48}{x} - \frac{48}{x^{2}})^{\frac{1}{2}}}\\=&cos^{2}(x)tan(x)sqrt(\frac{48}{x} - \frac{48}{x^{2}}) - sin^{2}(x)tan(x)sqrt(\frac{48}{x} - \frac{48}{x^{2}}) + sin(x)cos(x)sqrt(\frac{48}{x} - \frac{48}{x^{2}})sec^{2}(x) - \frac{24sin(x)cos(x)tan(x)}{(\frac{48}{x} - \frac{48}{x^{2}})^{\frac{1}{2}}x^{2}} + \frac{48sin(x)cos(x)tan(x)}{(\frac{48}{x} - \frac{48}{x^{2}})^{\frac{1}{2}}x^{3}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!