本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{x}^{2}}{({e}^{x})} - \frac{2x}{({e}^{(x + 1)})} + \frac{1}{({e}^{(x + 2)})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x^{2}{e}^{(-x)} - 2x{e}^{(-x - 1)} + {e}^{(-x - 2)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x^{2}{e}^{(-x)} - 2x{e}^{(-x - 1)} + {e}^{(-x - 2)}\right)}{dx}\\=&2x{e}^{(-x)} + x^{2}({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)})) - 2{e}^{(-x - 1)} - 2x({e}^{(-x - 1)}((-1 + 0)ln(e) + \frac{(-x - 1)(0)}{(e)})) + ({e}^{(-x - 2)}((-1 + 0)ln(e) + \frac{(-x - 2)(0)}{(e)}))\\=&2x{e}^{(-x)} - x^{2}{e}^{(-x)} - 2{e}^{(-x - 1)} + 2x{e}^{(-x - 1)} - {e}^{(-x - 2)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!