本次共计算 1 个题目:每一题对 t 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数t{e}^{t}((at + b)cos(2)t + (ct + d)sin(2)t) 关于 t 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = at^{3}{e}^{t}cos(2) + bt^{2}{e}^{t}cos(2) + ct^{3}{e}^{t}sin(2) + dt^{2}{e}^{t}sin(2)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( at^{3}{e}^{t}cos(2) + bt^{2}{e}^{t}cos(2) + ct^{3}{e}^{t}sin(2) + dt^{2}{e}^{t}sin(2)\right)}{dt}\\=&a*3t^{2}{e}^{t}cos(2) + at^{3}({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)}))cos(2) + at^{3}{e}^{t}*-sin(2)*0 + b*2t{e}^{t}cos(2) + bt^{2}({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)}))cos(2) + bt^{2}{e}^{t}*-sin(2)*0 + c*3t^{2}{e}^{t}sin(2) + ct^{3}({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)}))sin(2) + ct^{3}{e}^{t}cos(2)*0 + d*2t{e}^{t}sin(2) + dt^{2}({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)}))sin(2) + dt^{2}{e}^{t}cos(2)*0\\=&3at^{2}{e}^{t}cos(2) + at^{3}{e}^{t}cos(2) + 2bt{e}^{t}cos(2) + bt^{2}{e}^{t}cos(2) + 3ct^{2}{e}^{t}sin(2) + ct^{3}{e}^{t}sin(2) + 2dt{e}^{t}sin(2) + dt^{2}{e}^{t}sin(2)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!