本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{sin(2x)cos(3x)}{2x} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{\frac{1}{2}sin(2x)cos(3x)}{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{\frac{1}{2}sin(2x)cos(3x)}{x}\right)}{dx}\\=&\frac{\frac{1}{2}*-sin(2x)cos(3x)}{x^{2}} + \frac{\frac{1}{2}cos(2x)*2cos(3x)}{x} + \frac{\frac{1}{2}sin(2x)*-sin(3x)*3}{x}\\=&\frac{-sin(2x)cos(3x)}{2x^{2}} + \frac{cos(2x)cos(3x)}{x} - \frac{3sin(3x)sin(2x)}{2x}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-sin(2x)cos(3x)}{2x^{2}} + \frac{cos(2x)cos(3x)}{x} - \frac{3sin(3x)sin(2x)}{2x}\right)}{dx}\\=&\frac{--2sin(2x)cos(3x)}{2x^{3}} - \frac{cos(2x)*2cos(3x)}{2x^{2}} - \frac{sin(2x)*-sin(3x)*3}{2x^{2}} + \frac{-cos(2x)cos(3x)}{x^{2}} + \frac{-sin(2x)*2cos(3x)}{x} + \frac{cos(2x)*-sin(3x)*3}{x} - \frac{3*-sin(3x)sin(2x)}{2x^{2}} - \frac{3cos(3x)*3sin(2x)}{2x} - \frac{3sin(3x)cos(2x)*2}{2x}\\=&\frac{sin(2x)cos(3x)}{x^{3}} - \frac{2cos(2x)cos(3x)}{x^{2}} + \frac{3sin(3x)sin(2x)}{x^{2}} - \frac{13sin(2x)cos(3x)}{2x} - \frac{6sin(3x)cos(2x)}{x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!