本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(x + 1){(x - 1)}^{\frac{1}{2}}{\frac{1}{(x + 2)}}^{\frac{1}{3}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x(x - 1)^{\frac{1}{2}}{\frac{1}{(x + 2)}}^{\frac{1}{3}} + (x - 1)^{\frac{1}{2}}{\frac{1}{(x + 2)}}^{\frac{1}{3}}\right)}{dx}\\=&(x - 1)^{\frac{1}{2}}{\frac{1}{(x + 2)}}^{\frac{1}{3}} + x((x - 1)^{\frac{1}{2}}((0)ln(x - 1) + \frac{(\frac{1}{2})(1 + 0)}{(x - 1)})){\frac{1}{(x + 2)}}^{\frac{1}{3}} + x(x - 1)^{\frac{1}{2}}({\frac{1}{(x + 2)}}^{\frac{1}{3}}((0)ln(\frac{1}{(x + 2)}) + \frac{(\frac{1}{3})((\frac{-(1 + 0)}{(x + 2)^{2}}))}{(\frac{1}{(x + 2)})})) + ((x - 1)^{\frac{1}{2}}((0)ln(x - 1) + \frac{(\frac{1}{2})(1 + 0)}{(x - 1)})){\frac{1}{(x + 2)}}^{\frac{1}{3}} + (x - 1)^{\frac{1}{2}}({\frac{1}{(x + 2)}}^{\frac{1}{3}}((0)ln(\frac{1}{(x + 2)}) + \frac{(\frac{1}{3})((\frac{-(1 + 0)}{(x + 2)^{2}}))}{(\frac{1}{(x + 2)})}))\\=&\frac{(x - 1)^{\frac{1}{2}}x}{2(x - 1)(x + 2)^{\frac{1}{3}}} - \frac{(x - 1)^{\frac{1}{2}}x}{3(x + 2)^{\frac{4}{3}}} + \frac{(x - 1)^{\frac{1}{2}}}{2(x - 1)(x + 2)^{\frac{1}{3}}} - \frac{(x - 1)^{\frac{1}{2}}}{3(x + 2)^{\frac{4}{3}}} + \frac{(x - 1)^{\frac{1}{2}}}{(x + 2)^{\frac{1}{3}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!