本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(x + 1)sqrt(x - 1){\frac{1}{(x + 2)}}^{1}}{3} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{\frac{1}{3}xsqrt(x - 1)}{(x + 2)} + \frac{\frac{1}{3}sqrt(x - 1)}{(x + 2)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{\frac{1}{3}xsqrt(x - 1)}{(x + 2)} + \frac{\frac{1}{3}sqrt(x - 1)}{(x + 2)}\right)}{dx}\\=&\frac{1}{3}(\frac{-(1 + 0)}{(x + 2)^{2}})xsqrt(x - 1) + \frac{\frac{1}{3}sqrt(x - 1)}{(x + 2)} + \frac{\frac{1}{3}x(1 + 0)*\frac{1}{2}}{(x + 2)(x - 1)^{\frac{1}{2}}} + \frac{1}{3}(\frac{-(1 + 0)}{(x + 2)^{2}})sqrt(x - 1) + \frac{\frac{1}{3}(1 + 0)*\frac{1}{2}}{(x + 2)(x - 1)^{\frac{1}{2}}}\\=&\frac{-xsqrt(x - 1)}{3(x + 2)^{2}} + \frac{sqrt(x - 1)}{3(x + 2)} + \frac{x}{6(x + 2)(x - 1)^{\frac{1}{2}}} - \frac{sqrt(x - 1)}{3(x + 2)^{2}} + \frac{1}{6(x + 2)(x - 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!