本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{ln(x + 1){ln(ln(x))}^{sin({x}^{2})}}{sqrt(x)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{{ln(ln(x))}^{sin(x^{2})}ln(x + 1)}{sqrt(x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{{ln(ln(x))}^{sin(x^{2})}ln(x + 1)}{sqrt(x)}\right)}{dx}\\=&\frac{({ln(ln(x))}^{sin(x^{2})}((cos(x^{2})*2x)ln(ln(ln(x))) + \frac{(sin(x^{2}))(\frac{1}{(ln(x))(x)})}{(ln(ln(x)))}))ln(x + 1)}{sqrt(x)} + \frac{{ln(ln(x))}^{sin(x^{2})}(1 + 0)}{(x + 1)sqrt(x)} + \frac{{ln(ln(x))}^{sin(x^{2})}ln(x + 1)*-\frac{1}{2}}{(x)(x)^{\frac{1}{2}}}\\=&\frac{2x{ln(ln(x))}^{sin(x^{2})}ln(ln(ln(x)))ln(x + 1)cos(x^{2})}{sqrt(x)} + \frac{{ln(ln(x))}^{sin(x^{2})}ln(x + 1)sin(x^{2})}{xln(ln(x))ln(x)sqrt(x)} + \frac{{ln(ln(x))}^{sin(x^{2})}}{(x + 1)sqrt(x)} - \frac{{ln(ln(x))}^{sin(x^{2})}ln(x + 1)}{2x^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!