本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(tan(x) - x)}{(x - sin(x))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{tan(x)}{(x - sin(x))} - \frac{x}{(x - sin(x))}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{tan(x)}{(x - sin(x))} - \frac{x}{(x - sin(x))}\right)}{dx}\\=&(\frac{-(1 - cos(x))}{(x - sin(x))^{2}})tan(x) + \frac{sec^{2}(x)(1)}{(x - sin(x))} - (\frac{-(1 - cos(x))}{(x - sin(x))^{2}})x - \frac{1}{(x - sin(x))}\\=&\frac{cos(x)tan(x)}{(x - sin(x))^{2}} - \frac{tan(x)}{(x - sin(x))^{2}} + \frac{sec^{2}(x)}{(x - sin(x))} - \frac{xcos(x)}{(x - sin(x))^{2}} + \frac{x}{(x - sin(x))^{2}} - \frac{1}{(x - sin(x))}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!