本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{y}{({y}^{2} + {(x - s)}^{2})} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{y}{(y^{2} + x^{2} - 2sx + s^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{y}{(y^{2} + x^{2} - 2sx + s^{2})}\right)}{dx}\\=&(\frac{-(0 + 2x - 2s + 0)}{(y^{2} + x^{2} - 2sx + s^{2})^{2}})y + 0\\=&\frac{-2yx}{(y^{2} + x^{2} - 2sx + s^{2})^{2}} + \frac{2ys}{(y^{2} + x^{2} - 2sx + s^{2})^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-2yx}{(y^{2} + x^{2} - 2sx + s^{2})^{2}} + \frac{2ys}{(y^{2} + x^{2} - 2sx + s^{2})^{2}}\right)}{dx}\\=&-2(\frac{-2(0 + 2x - 2s + 0)}{(y^{2} + x^{2} - 2sx + s^{2})^{3}})yx - \frac{2y}{(y^{2} + x^{2} - 2sx + s^{2})^{2}} + 2(\frac{-2(0 + 2x - 2s + 0)}{(y^{2} + x^{2} - 2sx + s^{2})^{3}})ys + 0\\=&\frac{8yx^{2}}{(y^{2} + x^{2} - 2sx + s^{2})^{3}} - \frac{16ysx}{(y^{2} + x^{2} - 2sx + s^{2})^{3}} + \frac{8ys^{2}}{(y^{2} + x^{2} - 2sx + s^{2})^{3}} - \frac{2y}{(y^{2} + x^{2} - 2sx + s^{2})^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!