本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(sin(x)cos(x)){\frac{1}{(1 - {k}^{2}sin(x)sin(x))}}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{sin(x)cos(x)}{(-k^{2}sin^{2}(x) + 1)^{\frac{1}{2}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{sin(x)cos(x)}{(-k^{2}sin^{2}(x) + 1)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(-k^{2}*2sin(x)cos(x) + 0)}{(-k^{2}sin^{2}(x) + 1)^{\frac{3}{2}}})sin(x)cos(x) + \frac{cos(x)cos(x)}{(-k^{2}sin^{2}(x) + 1)^{\frac{1}{2}}} + \frac{sin(x)*-sin(x)}{(-k^{2}sin^{2}(x) + 1)^{\frac{1}{2}}}\\=&\frac{k^{2}sin^{2}(x)cos^{2}(x)}{(-k^{2}sin^{2}(x) + 1)^{\frac{3}{2}}} + \frac{cos^{2}(x)}{(-k^{2}sin^{2}(x) + 1)^{\frac{1}{2}}} - \frac{sin^{2}(x)}{(-k^{2}sin^{2}(x) + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!