本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(\frac{(x + 5)}{2}){(\frac{1}{2})}^{(x + 1)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{2}x{\frac{1}{2}}^{(x + 1)} + \frac{5}{2} * {\frac{1}{2}}^{(x + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{2}x{\frac{1}{2}}^{(x + 1)} + \frac{5}{2} * {\frac{1}{2}}^{(x + 1)}\right)}{dx}\\=&\frac{1}{2} * {\frac{1}{2}}^{(x + 1)} + \frac{1}{2}x({\frac{1}{2}}^{(x + 1)}((1 + 0)ln(\frac{1}{2}) + \frac{(x + 1)(0)}{(\frac{1}{2})})) + \frac{5}{2}({\frac{1}{2}}^{(x + 1)}((1 + 0)ln(\frac{1}{2}) + \frac{(x + 1)(0)}{(\frac{1}{2})}))\\=&\frac{5 * {\frac{1}{2}}^{(x + 1)}ln(\frac{1}{2})}{2} + \frac{x{\frac{1}{2}}^{(x + 1)}ln(\frac{1}{2})}{2} + \frac{{\frac{1}{2}}^{(x + 1)}}{2}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!