本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(\frac{2x}{({x}^{2} + \frac{1}{4})}){({x}^{2} + 1)}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{2(x^{2} + 1)^{\frac{1}{2}}x}{(x^{2} + \frac{1}{4})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{2(x^{2} + 1)^{\frac{1}{2}}x}{(x^{2} + \frac{1}{4})}\right)}{dx}\\=&2(\frac{-(2x + 0)}{(x^{2} + \frac{1}{4})^{2}})(x^{2} + 1)^{\frac{1}{2}}x + \frac{2(\frac{\frac{1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{1}{2}}})x}{(x^{2} + \frac{1}{4})} + \frac{2(x^{2} + 1)^{\frac{1}{2}}}{(x^{2} + \frac{1}{4})}\\=&\frac{-4(x^{2} + 1)^{\frac{1}{2}}x^{2}}{(x^{2} + \frac{1}{4})^{2}} + \frac{2x^{2}}{(x^{2} + \frac{1}{4})(x^{2} + 1)^{\frac{1}{2}}} + \frac{2(x^{2} + 1)^{\frac{1}{2}}}{(x^{2} + \frac{1}{4})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!