本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{(x - 3)}^{3}}{(x - 1)} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{3}}{(x - 1)} - \frac{9x^{2}}{(x - 1)} + \frac{27x}{(x - 1)} - \frac{27}{(x - 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{3}}{(x - 1)} - \frac{9x^{2}}{(x - 1)} + \frac{27x}{(x - 1)} - \frac{27}{(x - 1)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x - 1)^{2}})x^{3} + \frac{3x^{2}}{(x - 1)} - 9(\frac{-(1 + 0)}{(x - 1)^{2}})x^{2} - \frac{9*2x}{(x - 1)} + 27(\frac{-(1 + 0)}{(x - 1)^{2}})x + \frac{27}{(x - 1)} - 27(\frac{-(1 + 0)}{(x - 1)^{2}})\\=&\frac{-x^{3}}{(x - 1)^{2}} + \frac{3x^{2}}{(x - 1)} + \frac{9x^{2}}{(x - 1)^{2}} - \frac{18x}{(x - 1)} - \frac{27x}{(x - 1)^{2}} + \frac{27}{(x - 1)^{2}} + \frac{27}{(x - 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-x^{3}}{(x - 1)^{2}} + \frac{3x^{2}}{(x - 1)} + \frac{9x^{2}}{(x - 1)^{2}} - \frac{18x}{(x - 1)} - \frac{27x}{(x - 1)^{2}} + \frac{27}{(x - 1)^{2}} + \frac{27}{(x - 1)}\right)}{dx}\\=&-(\frac{-2(1 + 0)}{(x - 1)^{3}})x^{3} - \frac{3x^{2}}{(x - 1)^{2}} + 3(\frac{-(1 + 0)}{(x - 1)^{2}})x^{2} + \frac{3*2x}{(x - 1)} + 9(\frac{-2(1 + 0)}{(x - 1)^{3}})x^{2} + \frac{9*2x}{(x - 1)^{2}} - 18(\frac{-(1 + 0)}{(x - 1)^{2}})x - \frac{18}{(x - 1)} - 27(\frac{-2(1 + 0)}{(x - 1)^{3}})x - \frac{27}{(x - 1)^{2}} + 27(\frac{-2(1 + 0)}{(x - 1)^{3}}) + 27(\frac{-(1 + 0)}{(x - 1)^{2}})\\=&\frac{2x^{3}}{(x - 1)^{3}} - \frac{6x^{2}}{(x - 1)^{2}} + \frac{6x}{(x - 1)} - \frac{18x^{2}}{(x - 1)^{3}} + \frac{36x}{(x - 1)^{2}} + \frac{54x}{(x - 1)^{3}} - \frac{54}{(x - 1)^{3}} - \frac{54}{(x - 1)^{2}} - \frac{18}{(x - 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!