本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{cos(2)xsin(4)xxtan(5)xsec(5)x}{tan(7)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{5}sin(4)cos(2)tan(5)sec(5)}{tan(7)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{5}sin(4)cos(2)tan(5)sec(5)}{tan(7)}\right)}{dx}\\=&\frac{5x^{4}sin(4)cos(2)tan(5)sec(5)}{tan(7)} + \frac{x^{5}cos(4)*0cos(2)tan(5)sec(5)}{tan(7)} + \frac{x^{5}sin(4)*-sin(2)*0tan(5)sec(5)}{tan(7)} + \frac{x^{5}sin(4)cos(2)*-sec^{2}(7)(0)tan(5)sec(5)}{tan^{2}(7)} + \frac{x^{5}sin(4)cos(2)sec^{2}(5)(0)sec(5)}{tan(7)} + \frac{x^{5}sin(4)cos(2)tan(5)sec(5)tan(5)*0}{tan(7)}\\=&\frac{5x^{4}sin(4)cos(2)tan(5)sec(5)}{tan(7)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!