本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(x + 1){e}^{{x}^{2}} 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x{e}^{x^{2}} + {e}^{x^{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x{e}^{x^{2}} + {e}^{x^{2}}\right)}{dx}\\=&{e}^{x^{2}} + x({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)})) + ({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)}))\\=&{e}^{x^{2}} + 2x^{2}{e}^{x^{2}} + 2x{e}^{x^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {e}^{x^{2}} + 2x^{2}{e}^{x^{2}} + 2x{e}^{x^{2}}\right)}{dx}\\=&({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)})) + 2*2x{e}^{x^{2}} + 2x^{2}({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)})) + 2{e}^{x^{2}} + 2x({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)}))\\=&6x{e}^{x^{2}} + 2{e}^{x^{2}} + 4x^{3}{e}^{x^{2}} + 4x^{2}{e}^{x^{2}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 6x{e}^{x^{2}} + 2{e}^{x^{2}} + 4x^{3}{e}^{x^{2}} + 4x^{2}{e}^{x^{2}}\right)}{dx}\\=&6{e}^{x^{2}} + 6x({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)})) + 2({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)})) + 4*3x^{2}{e}^{x^{2}} + 4x^{3}({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)})) + 4*2x{e}^{x^{2}} + 4x^{2}({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)}))\\=&6{e}^{x^{2}} + 12x{e}^{x^{2}} + 24x^{2}{e}^{x^{2}} + 8x^{4}{e}^{x^{2}} + 8x^{3}{e}^{x^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!