本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{ln(x + sqrt({a}^{2} + {x}^{2}))}^{2} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln^{2}(x + sqrt(a^{2} + x^{2}))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln^{2}(x + sqrt(a^{2} + x^{2}))\right)}{dx}\\=&\frac{2ln(x + sqrt(a^{2} + x^{2}))(1 + \frac{(0 + 2x)*\frac{1}{2}}{(a^{2} + x^{2})^{\frac{1}{2}}})}{(x + sqrt(a^{2} + x^{2}))}\\=&\frac{2ln(x + sqrt(a^{2} + x^{2}))}{(x + sqrt(a^{2} + x^{2}))} + \frac{2xln(x + sqrt(a^{2} + x^{2}))}{(x + sqrt(a^{2} + x^{2}))(a^{2} + x^{2})^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{2ln(x + sqrt(a^{2} + x^{2}))}{(x + sqrt(a^{2} + x^{2}))} + \frac{2xln(x + sqrt(a^{2} + x^{2}))}{(x + sqrt(a^{2} + x^{2}))(a^{2} + x^{2})^{\frac{1}{2}}}\right)}{dx}\\=&2(\frac{-(1 + \frac{(0 + 2x)*\frac{1}{2}}{(a^{2} + x^{2})^{\frac{1}{2}}})}{(x + sqrt(a^{2} + x^{2}))^{2}})ln(x + sqrt(a^{2} + x^{2})) + \frac{2(1 + \frac{(0 + 2x)*\frac{1}{2}}{(a^{2} + x^{2})^{\frac{1}{2}}})}{(x + sqrt(a^{2} + x^{2}))(x + sqrt(a^{2} + x^{2}))} + \frac{2(\frac{-(1 + \frac{(0 + 2x)*\frac{1}{2}}{(a^{2} + x^{2})^{\frac{1}{2}}})}{(x + sqrt(a^{2} + x^{2}))^{2}})xln(x + sqrt(a^{2} + x^{2}))}{(a^{2} + x^{2})^{\frac{1}{2}}} + \frac{2(\frac{\frac{-1}{2}(0 + 2x)}{(a^{2} + x^{2})^{\frac{3}{2}}})xln(x + sqrt(a^{2} + x^{2}))}{(x + sqrt(a^{2} + x^{2}))} + \frac{2ln(x + sqrt(a^{2} + x^{2}))}{(x + sqrt(a^{2} + x^{2}))(a^{2} + x^{2})^{\frac{1}{2}}} + \frac{2x(1 + \frac{(0 + 2x)*\frac{1}{2}}{(a^{2} + x^{2})^{\frac{1}{2}}})}{(x + sqrt(a^{2} + x^{2}))(a^{2} + x^{2})^{\frac{1}{2}}(x + sqrt(a^{2} + x^{2}))}\\=& - \frac{4xln(x + sqrt(a^{2} + x^{2}))}{(x + sqrt(a^{2} + x^{2}))^{2}(a^{2} + x^{2})^{\frac{1}{2}}} - \frac{2ln(x + sqrt(a^{2} + x^{2}))}{(x + sqrt(a^{2} + x^{2}))^{2}} - \frac{2x^{2}ln(x + sqrt(a^{2} + x^{2}))}{(x + sqrt(a^{2} + x^{2}))^{2}(a^{2} + x^{2})} - \frac{2x^{2}ln(x + sqrt(a^{2} + x^{2}))}{(a^{2} + x^{2})^{\frac{3}{2}}(x + sqrt(a^{2} + x^{2}))} + \frac{2x}{(x + sqrt(a^{2} + x^{2}))^{2}(a^{2} + x^{2})^{\frac{1}{2}}} + \frac{2x}{(a^{2} + x^{2})^{\frac{1}{2}}(x + sqrt(a^{2} + x^{2}))^{2}} + \frac{2ln(x + sqrt(a^{2} + x^{2}))}{(x + sqrt(a^{2} + x^{2}))(a^{2} + x^{2})^{\frac{1}{2}}} + \frac{2x^{2}}{(a^{2} + x^{2})(x + sqrt(a^{2} + x^{2}))^{2}} + \frac{2}{(x + sqrt(a^{2} + x^{2}))^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!