本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt({e}^{\frac{1}{x}}sqrt(xsqrt(sin(x)))) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt({e}^{\frac{1}{x}}sqrt(xsqrt(sin(x))))\right)}{dx}\\=&\frac{(({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)}))sqrt(xsqrt(sin(x))) + \frac{{e}^{\frac{1}{x}}(sqrt(sin(x)) + \frac{xcos(x)*\frac{1}{2}}{(sin(x))^{\frac{1}{2}}})*\frac{1}{2}}{(xsqrt(sin(x)))^{\frac{1}{2}}})*\frac{1}{2}}{({e}^{\frac{1}{x}}sqrt(xsqrt(sin(x))))^{\frac{1}{2}}}\\=&\frac{{e}^{(\frac{\frac{1}{2}}{x})}sqrt(sin(x))^{\frac{1}{2}}}{4x^{\frac{1}{2}}sqrt(xsqrt(sin(x)))^{\frac{1}{2}}} - \frac{{e}^{(\frac{\frac{1}{2}}{x})}sqrt(xsqrt(sin(x)))^{\frac{1}{2}}}{2x^{2}} + \frac{x^{\frac{1}{2}}{e}^{(\frac{\frac{1}{2}}{x})}cos(x)}{8sin^{\frac{1}{2}}(x)sqrt(sin(x))^{\frac{1}{2}}sqrt(xsqrt(sin(x)))^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!