本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数xxx + xsin(xxxxx) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = xsin(x^{5}) + x^{3}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( xsin(x^{5}) + x^{3}\right)}{dx}\\=&sin(x^{5}) + xcos(x^{5})*5x^{4} + 3x^{2}\\=&sin(x^{5}) + 5x^{5}cos(x^{5}) + 3x^{2}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( sin(x^{5}) + 5x^{5}cos(x^{5}) + 3x^{2}\right)}{dx}\\=&cos(x^{5})*5x^{4} + 5*5x^{4}cos(x^{5}) + 5x^{5}*-sin(x^{5})*5x^{4} + 3*2x\\=&30x^{4}cos(x^{5}) - 25x^{9}sin(x^{5}) + 6x\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 30x^{4}cos(x^{5}) - 25x^{9}sin(x^{5}) + 6x\right)}{dx}\\=&30*4x^{3}cos(x^{5}) + 30x^{4}*-sin(x^{5})*5x^{4} - 25*9x^{8}sin(x^{5}) - 25x^{9}cos(x^{5})*5x^{4} + 6\\=&120x^{3}cos(x^{5}) - 375x^{8}sin(x^{5}) - 125x^{13}cos(x^{5}) + 6\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 120x^{3}cos(x^{5}) - 375x^{8}sin(x^{5}) - 125x^{13}cos(x^{5}) + 6\right)}{dx}\\=&120*3x^{2}cos(x^{5}) + 120x^{3}*-sin(x^{5})*5x^{4} - 375*8x^{7}sin(x^{5}) - 375x^{8}cos(x^{5})*5x^{4} - 125*13x^{12}cos(x^{5}) - 125x^{13}*-sin(x^{5})*5x^{4} + 0\\=&360x^{2}cos(x^{5}) - 3600x^{7}sin(x^{5}) - 3500x^{12}cos(x^{5}) + 625x^{17}sin(x^{5})\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!