本次共计算 1 个题目:每一题对 k 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数2{(M - k)}^{2}{\frac{1}{(k - 1)}}^{2} - \frac{2(M - k)}{(k - 1)} + 2{k}^{2} - 2k 关于 k 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - \frac{4Mk}{(k - 1)^{2}} + \frac{2M^{2}}{(k - 1)^{2}} + \frac{2k^{2}}{(k - 1)^{2}} - \frac{2M}{(k - 1)} + \frac{2k}{(k - 1)} + 2k^{2} - 2k\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - \frac{4Mk}{(k - 1)^{2}} + \frac{2M^{2}}{(k - 1)^{2}} + \frac{2k^{2}}{(k - 1)^{2}} - \frac{2M}{(k - 1)} + \frac{2k}{(k - 1)} + 2k^{2} - 2k\right)}{dk}\\=& - 4(\frac{-2(1 + 0)}{(k - 1)^{3}})Mk - \frac{4M}{(k - 1)^{2}} + 2(\frac{-2(1 + 0)}{(k - 1)^{3}})M^{2} + 0 + 2(\frac{-2(1 + 0)}{(k - 1)^{3}})k^{2} + \frac{2*2k}{(k - 1)^{2}} - 2(\frac{-(1 + 0)}{(k - 1)^{2}})M + 0 + 2(\frac{-(1 + 0)}{(k - 1)^{2}})k + \frac{2}{(k - 1)} + 2*2k - 2\\=&\frac{8Mk}{(k - 1)^{3}} - \frac{2M}{(k - 1)^{2}} - \frac{4M^{2}}{(k - 1)^{3}} - \frac{4k^{2}}{(k - 1)^{3}} + \frac{2k}{(k - 1)^{2}} + \frac{2}{(k - 1)} + 4k - 2\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!