本次共计算 1 个题目:每一题对 y 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(y - 2x{e}^{(xy)}){e}^{(-{x}^{2} - {y}^{2})} 关于 y 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = y{e}^{(-x^{2} - y^{2})} - 2x{e}^{(xy)}{e}^{(-x^{2} - y^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( y{e}^{(-x^{2} - y^{2})} - 2x{e}^{(xy)}{e}^{(-x^{2} - y^{2})}\right)}{dy}\\=&{e}^{(-x^{2} - y^{2})} + y({e}^{(-x^{2} - y^{2})}((0 - 2y)ln(e) + \frac{(-x^{2} - y^{2})(0)}{(e)})) - 2x({e}^{(xy)}((x)ln(e) + \frac{(xy)(0)}{(e)})){e}^{(-x^{2} - y^{2})} - 2x{e}^{(xy)}({e}^{(-x^{2} - y^{2})}((0 - 2y)ln(e) + \frac{(-x^{2} - y^{2})(0)}{(e)}))\\=&{e}^{(-x^{2} - y^{2})} - 2y^{2}{e}^{(-x^{2} - y^{2})} - 2x^{2}{e}^{(xy)}{e}^{(-x^{2} - y^{2})} + 4xy{e}^{(-x^{2} - y^{2})}{e}^{(xy)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!