本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数25(1 - sqrt(1 + (\frac{1}{(tan(x))})))(1 - {(tan(x))}^{2}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 25tan^{2}(x)sqrt(\frac{1}{tan(x)} + 1) - 25sqrt(\frac{1}{tan(x)} + 1) - 25tan^{2}(x) + 25\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 25tan^{2}(x)sqrt(\frac{1}{tan(x)} + 1) - 25sqrt(\frac{1}{tan(x)} + 1) - 25tan^{2}(x) + 25\right)}{dx}\\=&25*2tan(x)sec^{2}(x)(1)sqrt(\frac{1}{tan(x)} + 1) + \frac{25tan^{2}(x)(\frac{-sec^{2}(x)(1)}{tan^{2}(x)} + 0)*\frac{1}{2}}{(\frac{1}{tan(x)} + 1)^{\frac{1}{2}}} - \frac{25(\frac{-sec^{2}(x)(1)}{tan^{2}(x)} + 0)*\frac{1}{2}}{(\frac{1}{tan(x)} + 1)^{\frac{1}{2}}} - 25*2tan(x)sec^{2}(x)(1) + 0\\=&50tan(x)sqrt(\frac{1}{tan(x)} + 1)sec^{2}(x) - \frac{25sec^{2}(x)}{2(\frac{1}{tan(x)} + 1)^{\frac{1}{2}}} + \frac{25sec^{2}(x)}{2(\frac{1}{tan(x)} + 1)^{\frac{1}{2}}tan^{2}(x)} - 50tan(x)sec^{2}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!