本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(x - 1)}{(sqrt(x)ln(x))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x}{ln(x)sqrt(x)} - \frac{1}{ln(x)sqrt(x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x}{ln(x)sqrt(x)} - \frac{1}{ln(x)sqrt(x)}\right)}{dx}\\=&\frac{1}{ln(x)sqrt(x)} + \frac{x*-1}{ln^{2}(x)(x)sqrt(x)} + \frac{x*-\frac{1}{2}}{ln(x)(x)(x)^{\frac{1}{2}}} - \frac{-1}{ln^{2}(x)(x)sqrt(x)} - \frac{-\frac{1}{2}}{ln(x)(x)(x)^{\frac{1}{2}}}\\=&\frac{1}{ln(x)sqrt(x)} - \frac{1}{ln^{2}(x)sqrt(x)} - \frac{1}{2x^{\frac{1}{2}}ln(x)} + \frac{1}{xln^{2}(x)sqrt(x)} + \frac{1}{2x^{\frac{3}{2}}ln(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!