数学
         
语言:中文    Language:English
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案

    本次共计算 1 个题目:每一题对 t 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{{t}^{(x - 1)}}{({e}^{t} - 1)} 关于 t 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{{t}^{(x - 1)}}{({e}^{t} - 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{{t}^{(x - 1)}}{({e}^{t} - 1)}\right)}{dt}\\=&(\frac{-(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{2}}){t}^{(x - 1)} + \frac{({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)}\\=&\frac{-{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}} + \frac{x{t}^{(x - 1)}}{({e}^{t} - 1)t} - \frac{{t}^{(x - 1)}}{({e}^{t} - 1)t}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}} + \frac{x{t}^{(x - 1)}}{({e}^{t} - 1)t} - \frac{{t}^{(x - 1)}}{({e}^{t} - 1)t}\right)}{dt}\\=&-(\frac{-2(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{3}}){e}^{t}{t}^{(x - 1)} - \frac{({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})){t}^{(x - 1)}}{({e}^{t} - 1)^{2}} - \frac{{e}^{t}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)^{2}} + \frac{(\frac{-(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{2}})x{t}^{(x - 1)}}{t} + \frac{x*-{t}^{(x - 1)}}{({e}^{t} - 1)t^{2}} + \frac{x({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)t} - \frac{(\frac{-(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{2}}){t}^{(x - 1)}}{t} - \frac{-{t}^{(x - 1)}}{({e}^{t} - 1)t^{2}} - \frac{({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)t}\\=&\frac{2{e}^{(2t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{3}} - \frac{{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}} - \frac{x{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t} + \frac{{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t} - \frac{x{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t} - \frac{3x{t}^{(x - 1)}}{({e}^{t} - 1)t^{2}} + \frac{x^{2}{t}^{(x - 1)}}{({e}^{t} - 1)t^{2}} + \frac{{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t} + \frac{2{t}^{(x - 1)}}{({e}^{t} - 1)t^{2}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2{e}^{(2t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{3}} - \frac{{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}} - \frac{x{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t} + \frac{{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t} - \frac{x{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t} - \frac{3x{t}^{(x - 1)}}{({e}^{t} - 1)t^{2}} + \frac{x^{2}{t}^{(x - 1)}}{({e}^{t} - 1)t^{2}} + \frac{{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t} + \frac{2{t}^{(x - 1)}}{({e}^{t} - 1)t^{2}}\right)}{dt}\\=&2(\frac{-3(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{4}}){e}^{(2t)}{t}^{(x - 1)} + \frac{2({e}^{(2t)}((2)ln(e) + \frac{(2t)(0)}{(e)})){t}^{(x - 1)}}{({e}^{t} - 1)^{3}} + \frac{2{e}^{(2t)}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)^{3}} - (\frac{-2(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{3}}){e}^{t}{t}^{(x - 1)} - \frac{({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})){t}^{(x - 1)}}{({e}^{t} - 1)^{2}} - \frac{{e}^{t}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)^{2}} - \frac{(\frac{-2(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{3}})x{t}^{(x - 1)}{e}^{t}}{t} - \frac{x*-{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{2}} - \frac{x({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)})){e}^{t}}{({e}^{t} - 1)^{2}t} - \frac{x{t}^{(x - 1)}({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)}))}{({e}^{t} - 1)^{2}t} + \frac{(\frac{-2(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{3}}){t}^{(x - 1)}{e}^{t}}{t} + \frac{-{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{2}} + \frac{({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)})){e}^{t}}{({e}^{t} - 1)^{2}t} + \frac{{t}^{(x - 1)}({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)}))}{({e}^{t} - 1)^{2}t} - \frac{(\frac{-2(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{3}})x{e}^{t}{t}^{(x - 1)}}{t} - \frac{x*-{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{2}} - \frac{x({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})){t}^{(x - 1)}}{({e}^{t} - 1)^{2}t} - \frac{x{e}^{t}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)^{2}t} - \frac{3(\frac{-(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{2}})x{t}^{(x - 1)}}{t^{2}} - \frac{3x*-2{t}^{(x - 1)}}{({e}^{t} - 1)t^{3}} - \frac{3x({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)t^{2}} + \frac{(\frac{-(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{2}})x^{2}{t}^{(x - 1)}}{t^{2}} + \frac{x^{2}*-2{t}^{(x - 1)}}{({e}^{t} - 1)t^{3}} + \frac{x^{2}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)t^{2}} + \frac{(\frac{-2(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{3}}){e}^{t}{t}^{(x - 1)}}{t} + \frac{-{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{2}} + \frac{({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})){t}^{(x - 1)}}{({e}^{t} - 1)^{2}t} + \frac{{e}^{t}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)^{2}t} + \frac{2(\frac{-(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{2}}){t}^{(x - 1)}}{t^{2}} + \frac{2*-2{t}^{(x - 1)}}{({e}^{t} - 1)t^{3}} + \frac{2({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)t^{2}}\\=&\frac{-6{e}^{(3t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{4}} + \frac{6{e}^{(2t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{3}} + \frac{2x{t}^{(x - 1)}{e}^{(2t)}}{({e}^{t} - 1)^{3}t} - \frac{2{t}^{(x - 1)}{e}^{(2t)}}{({e}^{t} - 1)^{3}t} - \frac{{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}} - \frac{x{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t} + \frac{{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t} + \frac{4x{e}^{(2t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{3}t} + \frac{5x{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{2}} - \frac{2x^{2}{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{2}} - \frac{2x{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t} - \frac{4{e}^{(2t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{3}t} - \frac{3{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{2}} + \frac{2{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t} + \frac{4x{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{2}} - \frac{x^{2}{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{2}} - \frac{6x^{2}{t}^{(x - 1)}}{({e}^{t} - 1)t^{3}} + \frac{11x{t}^{(x - 1)}}{({e}^{t} - 1)t^{3}} + \frac{x^{3}{t}^{(x - 1)}}{({e}^{t} - 1)t^{3}} - \frac{3{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{2}} - \frac{6{t}^{(x - 1)}}{({e}^{t} - 1)t^{3}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-6{e}^{(3t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{4}} + \frac{6{e}^{(2t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{3}} + \frac{2x{t}^{(x - 1)}{e}^{(2t)}}{({e}^{t} - 1)^{3}t} - \frac{2{t}^{(x - 1)}{e}^{(2t)}}{({e}^{t} - 1)^{3}t} - \frac{{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}} - \frac{x{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t} + \frac{{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t} + \frac{4x{e}^{(2t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{3}t} + \frac{5x{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{2}} - \frac{2x^{2}{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{2}} - \frac{2x{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t} - \frac{4{e}^{(2t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{3}t} - \frac{3{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{2}} + \frac{2{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t} + \frac{4x{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{2}} - \frac{x^{2}{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{2}} - \frac{6x^{2}{t}^{(x - 1)}}{({e}^{t} - 1)t^{3}} + \frac{11x{t}^{(x - 1)}}{({e}^{t} - 1)t^{3}} + \frac{x^{3}{t}^{(x - 1)}}{({e}^{t} - 1)t^{3}} - \frac{3{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{2}} - \frac{6{t}^{(x - 1)}}{({e}^{t} - 1)t^{3}}\right)}{dt}\\=&-6(\frac{-4(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{5}}){e}^{(3t)}{t}^{(x - 1)} - \frac{6({e}^{(3t)}((3)ln(e) + \frac{(3t)(0)}{(e)})){t}^{(x - 1)}}{({e}^{t} - 1)^{4}} - \frac{6{e}^{(3t)}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)^{4}} + 6(\frac{-3(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{4}}){e}^{(2t)}{t}^{(x - 1)} + \frac{6({e}^{(2t)}((2)ln(e) + \frac{(2t)(0)}{(e)})){t}^{(x - 1)}}{({e}^{t} - 1)^{3}} + \frac{6{e}^{(2t)}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)^{3}} + \frac{2(\frac{-3(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{4}})x{t}^{(x - 1)}{e}^{(2t)}}{t} + \frac{2x*-{t}^{(x - 1)}{e}^{(2t)}}{({e}^{t} - 1)^{3}t^{2}} + \frac{2x({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)})){e}^{(2t)}}{({e}^{t} - 1)^{3}t} + \frac{2x{t}^{(x - 1)}({e}^{(2t)}((2)ln(e) + \frac{(2t)(0)}{(e)}))}{({e}^{t} - 1)^{3}t} - \frac{2(\frac{-3(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{4}}){t}^{(x - 1)}{e}^{(2t)}}{t} - \frac{2*-{t}^{(x - 1)}{e}^{(2t)}}{({e}^{t} - 1)^{3}t^{2}} - \frac{2({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)})){e}^{(2t)}}{({e}^{t} - 1)^{3}t} - \frac{2{t}^{(x - 1)}({e}^{(2t)}((2)ln(e) + \frac{(2t)(0)}{(e)}))}{({e}^{t} - 1)^{3}t} - (\frac{-2(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{3}}){e}^{t}{t}^{(x - 1)} - \frac{({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})){t}^{(x - 1)}}{({e}^{t} - 1)^{2}} - \frac{{e}^{t}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)^{2}} - \frac{(\frac{-2(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{3}})x{t}^{(x - 1)}{e}^{t}}{t} - \frac{x*-{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{2}} - \frac{x({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)})){e}^{t}}{({e}^{t} - 1)^{2}t} - \frac{x{t}^{(x - 1)}({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)}))}{({e}^{t} - 1)^{2}t} + \frac{(\frac{-2(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{3}}){t}^{(x - 1)}{e}^{t}}{t} + \frac{-{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{2}} + \frac{({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)})){e}^{t}}{({e}^{t} - 1)^{2}t} + \frac{{t}^{(x - 1)}({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)}))}{({e}^{t} - 1)^{2}t} + \frac{4(\frac{-3(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{4}})x{e}^{(2t)}{t}^{(x - 1)}}{t} + \frac{4x*-{e}^{(2t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{3}t^{2}} + \frac{4x({e}^{(2t)}((2)ln(e) + \frac{(2t)(0)}{(e)})){t}^{(x - 1)}}{({e}^{t} - 1)^{3}t} + \frac{4x{e}^{(2t)}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)^{3}t} + \frac{5(\frac{-2(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{3}})x{t}^{(x - 1)}{e}^{t}}{t^{2}} + \frac{5x*-2{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{3}} + \frac{5x({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)})){e}^{t}}{({e}^{t} - 1)^{2}t^{2}} + \frac{5x{t}^{(x - 1)}({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)}))}{({e}^{t} - 1)^{2}t^{2}} - \frac{2(\frac{-2(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{3}})x^{2}{t}^{(x - 1)}{e}^{t}}{t^{2}} - \frac{2x^{2}*-2{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{3}} - \frac{2x^{2}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)})){e}^{t}}{({e}^{t} - 1)^{2}t^{2}} - \frac{2x^{2}{t}^{(x - 1)}({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)}))}{({e}^{t} - 1)^{2}t^{2}} - \frac{2(\frac{-2(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{3}})x{e}^{t}{t}^{(x - 1)}}{t} - \frac{2x*-{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{2}} - \frac{2x({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})){t}^{(x - 1)}}{({e}^{t} - 1)^{2}t} - \frac{2x{e}^{t}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)^{2}t} - \frac{4(\frac{-3(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{4}}){e}^{(2t)}{t}^{(x - 1)}}{t} - \frac{4*-{e}^{(2t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{3}t^{2}} - \frac{4({e}^{(2t)}((2)ln(e) + \frac{(2t)(0)}{(e)})){t}^{(x - 1)}}{({e}^{t} - 1)^{3}t} - \frac{4{e}^{(2t)}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)^{3}t} - \frac{3(\frac{-2(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{3}}){t}^{(x - 1)}{e}^{t}}{t^{2}} - \frac{3*-2{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{3}} - \frac{3({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)})){e}^{t}}{({e}^{t} - 1)^{2}t^{2}} - \frac{3{t}^{(x - 1)}({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)}))}{({e}^{t} - 1)^{2}t^{2}} + \frac{2(\frac{-2(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{3}}){e}^{t}{t}^{(x - 1)}}{t} + \frac{2*-{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{2}} + \frac{2({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})){t}^{(x - 1)}}{({e}^{t} - 1)^{2}t} + \frac{2{e}^{t}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)^{2}t} + \frac{4(\frac{-2(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{3}})x{e}^{t}{t}^{(x - 1)}}{t^{2}} + \frac{4x*-2{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{3}} + \frac{4x({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})){t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{2}} + \frac{4x{e}^{t}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)^{2}t^{2}} - \frac{(\frac{-2(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{3}})x^{2}{e}^{t}{t}^{(x - 1)}}{t^{2}} - \frac{x^{2}*-2{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{3}} - \frac{x^{2}({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})){t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{2}} - \frac{x^{2}{e}^{t}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)^{2}t^{2}} - \frac{6(\frac{-(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{2}})x^{2}{t}^{(x - 1)}}{t^{3}} - \frac{6x^{2}*-3{t}^{(x - 1)}}{({e}^{t} - 1)t^{4}} - \frac{6x^{2}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)t^{3}} + \frac{11(\frac{-(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{2}})x{t}^{(x - 1)}}{t^{3}} + \frac{11x*-3{t}^{(x - 1)}}{({e}^{t} - 1)t^{4}} + \frac{11x({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)t^{3}} + \frac{(\frac{-(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{2}})x^{3}{t}^{(x - 1)}}{t^{3}} + \frac{x^{3}*-3{t}^{(x - 1)}}{({e}^{t} - 1)t^{4}} + \frac{x^{3}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)t^{3}} - \frac{3(\frac{-2(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{3}}){e}^{t}{t}^{(x - 1)}}{t^{2}} - \frac{3*-2{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{3}} - \frac{3({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})){t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{2}} - \frac{3{e}^{t}({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)^{2}t^{2}} - \frac{6(\frac{-(({e}^{t}((1)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{({e}^{t} - 1)^{2}}){t}^{(x - 1)}}{t^{3}} - \frac{6*-3{t}^{(x - 1)}}{({e}^{t} - 1)t^{4}} - \frac{6({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{({e}^{t} - 1)t^{3}}\\=&\frac{24{e}^{(4t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{5}} - \frac{36{e}^{(3t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{4}} - \frac{6x{t}^{(x - 1)}{e}^{(3t)}}{({e}^{t} - 1)^{4}t} + \frac{6{t}^{(x - 1)}{e}^{(3t)}}{({e}^{t} - 1)^{4}t} + \frac{14{e}^{(2t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{3}} + \frac{6x{t}^{(x - 1)}{e}^{(2t)}}{({e}^{t} - 1)^{3}t} - \frac{6{t}^{(x - 1)}{e}^{(2t)}}{({e}^{t} - 1)^{3}t} - \frac{18x{e}^{(3t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{4}t} - \frac{14x{t}^{(x - 1)}{e}^{(2t)}}{({e}^{t} - 1)^{3}t^{2}} + \frac{6x^{2}{t}^{(x - 1)}{e}^{(2t)}}{({e}^{t} - 1)^{3}t^{2}} + \frac{18x{e}^{(2t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{3}t} + \frac{18{e}^{(3t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{4}t} + \frac{8{t}^{(x - 1)}{e}^{(2t)}}{({e}^{t} - 1)^{3}t^{2}} - \frac{18{e}^{(2t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{3}t} - \frac{{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}} - \frac{x{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t} + \frac{{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t} + \frac{7x{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{2}} - \frac{3x^{2}{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{2}} - \frac{4{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{2}} - \frac{22x{e}^{(2t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{3}t^{2}} - \frac{25x{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{3}} + \frac{16x^{2}{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{3}} + \frac{11x{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{2}} + \frac{6x^{2}{e}^{(2t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{3}t^{2}} - \frac{3x{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t} - \frac{3x^{3}{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{3}} - \frac{3x^{2}{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{2}} + \frac{16{e}^{(2t)}{t}^{(x - 1)}}{({e}^{t} - 1)^{3}t^{2}} + \frac{12{t}^{(x - 1)}{e}^{t}}{({e}^{t} - 1)^{2}t^{3}} + \frac{3{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t} - \frac{8{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{2}} - \frac{19x{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{3}} + \frac{8x^{2}{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{3}} - \frac{x^{3}{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{3}} - \frac{10x^{3}{t}^{(x - 1)}}{({e}^{t} - 1)t^{4}} - \frac{50x{t}^{(x - 1)}}{({e}^{t} - 1)t^{4}} + \frac{35x^{2}{t}^{(x - 1)}}{({e}^{t} - 1)t^{4}} + \frac{x^{4}{t}^{(x - 1)}}{({e}^{t} - 1)t^{4}} + \frac{12{e}^{t}{t}^{(x - 1)}}{({e}^{t} - 1)^{2}t^{3}} + \frac{24{t}^{(x - 1)}}{({e}^{t} - 1)t^{4}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。