本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(1 + k){(3{x}^{2} - 2x + 3)}^{\frac{1}{2}}}{(1 + {k}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{(3x^{2} - 2x + 3)^{\frac{1}{2}}k}{(k^{2} + 1)} + \frac{(3x^{2} - 2x + 3)^{\frac{1}{2}}}{(k^{2} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{(3x^{2} - 2x + 3)^{\frac{1}{2}}k}{(k^{2} + 1)} + \frac{(3x^{2} - 2x + 3)^{\frac{1}{2}}}{(k^{2} + 1)}\right)}{dx}\\=&(\frac{-(0 + 0)}{(k^{2} + 1)^{2}})(3x^{2} - 2x + 3)^{\frac{1}{2}}k + \frac{(\frac{\frac{1}{2}(3*2x - 2 + 0)}{(3x^{2} - 2x + 3)^{\frac{1}{2}}})k}{(k^{2} + 1)} + 0 + (\frac{-(0 + 0)}{(k^{2} + 1)^{2}})(3x^{2} - 2x + 3)^{\frac{1}{2}} + \frac{(\frac{\frac{1}{2}(3*2x - 2 + 0)}{(3x^{2} - 2x + 3)^{\frac{1}{2}}})}{(k^{2} + 1)}\\=&\frac{3kx}{(3x^{2} - 2x + 3)^{\frac{1}{2}}(k^{2} + 1)} - \frac{k}{(3x^{2} - 2x + 3)^{\frac{1}{2}}(k^{2} + 1)} + \frac{3x}{(3x^{2} - 2x + 3)^{\frac{1}{2}}(k^{2} + 1)} - \frac{1}{(3x^{2} - 2x + 3)^{\frac{1}{2}}(k^{2} + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!