本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{(x - e^{-a} + 1)}^{2}}{(x + a)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - \frac{2xe^{-a}}{(x + a)} + \frac{x^{2}}{(x + a)} + \frac{2x}{(x + a)} + \frac{e^{{-a}*{2}}}{(x + a)} - \frac{2e^{-a}}{(x + a)} + \frac{1}{(x + a)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - \frac{2xe^{-a}}{(x + a)} + \frac{x^{2}}{(x + a)} + \frac{2x}{(x + a)} + \frac{e^{{-a}*{2}}}{(x + a)} - \frac{2e^{-a}}{(x + a)} + \frac{1}{(x + a)}\right)}{dx}\\=& - 2(\frac{-(1 + 0)}{(x + a)^{2}})xe^{-a} - \frac{2e^{-a}}{(x + a)} - \frac{2xe^{-a}*0}{(x + a)} + (\frac{-(1 + 0)}{(x + a)^{2}})x^{2} + \frac{2x}{(x + a)} + 2(\frac{-(1 + 0)}{(x + a)^{2}})x + \frac{2}{(x + a)} + (\frac{-(1 + 0)}{(x + a)^{2}})e^{{-a}*{2}} + \frac{2e^{-a}e^{-a}*0}{(x + a)} - 2(\frac{-(1 + 0)}{(x + a)^{2}})e^{-a} - \frac{2e^{-a}*0}{(x + a)} + (\frac{-(1 + 0)}{(x + a)^{2}})\\=&\frac{2xe^{-a}}{(x + a)^{2}} - \frac{2e^{-a}}{(x + a)} - \frac{x^{2}}{(x + a)^{2}} + \frac{2x}{(x + a)} - \frac{2x}{(x + a)^{2}} - \frac{e^{{-a}*{2}}}{(x + a)^{2}} + \frac{2e^{-a}}{(x + a)^{2}} + \frac{2}{(x + a)} - \frac{1}{(x + a)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!