本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数({x}^{n})(ln(x)) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {x}^{n}ln(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {x}^{n}ln(x)\right)}{dx}\\=&({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)}))ln(x) + \frac{{x}^{n}}{(x)}\\=&\frac{n{x}^{n}ln(x)}{x} + \frac{{x}^{n}}{x}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{n{x}^{n}ln(x)}{x} + \frac{{x}^{n}}{x}\right)}{dx}\\=&\frac{n*-{x}^{n}ln(x)}{x^{2}} + \frac{n({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)}))ln(x)}{x} + \frac{n{x}^{n}}{x(x)} + \frac{-{x}^{n}}{x^{2}} + \frac{({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)}))}{x}\\=&\frac{-n{x}^{n}ln(x)}{x^{2}} + \frac{n^{2}{x}^{n}ln(x)}{x^{2}} + \frac{2n{x}^{n}}{x^{2}} - \frac{{x}^{n}}{x^{2}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-n{x}^{n}ln(x)}{x^{2}} + \frac{n^{2}{x}^{n}ln(x)}{x^{2}} + \frac{2n{x}^{n}}{x^{2}} - \frac{{x}^{n}}{x^{2}}\right)}{dx}\\=&\frac{-n*-2{x}^{n}ln(x)}{x^{3}} - \frac{n({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)}))ln(x)}{x^{2}} - \frac{n{x}^{n}}{x^{2}(x)} + \frac{n^{2}*-2{x}^{n}ln(x)}{x^{3}} + \frac{n^{2}({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)}))ln(x)}{x^{2}} + \frac{n^{2}{x}^{n}}{x^{2}(x)} + \frac{2n*-2{x}^{n}}{x^{3}} + \frac{2n({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)}))}{x^{2}} - \frac{-2{x}^{n}}{x^{3}} - \frac{({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)}))}{x^{2}}\\=&\frac{2n{x}^{n}ln(x)}{x^{3}} - \frac{3n^{2}{x}^{n}ln(x)}{x^{3}} + \frac{n^{3}{x}^{n}ln(x)}{x^{3}} - \frac{6n{x}^{n}}{x^{3}} + \frac{3n^{2}{x}^{n}}{x^{3}} + \frac{2{x}^{n}}{x^{3}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{2n{x}^{n}ln(x)}{x^{3}} - \frac{3n^{2}{x}^{n}ln(x)}{x^{3}} + \frac{n^{3}{x}^{n}ln(x)}{x^{3}} - \frac{6n{x}^{n}}{x^{3}} + \frac{3n^{2}{x}^{n}}{x^{3}} + \frac{2{x}^{n}}{x^{3}}\right)}{dx}\\=&\frac{2n*-3{x}^{n}ln(x)}{x^{4}} + \frac{2n({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)}))ln(x)}{x^{3}} + \frac{2n{x}^{n}}{x^{3}(x)} - \frac{3n^{2}*-3{x}^{n}ln(x)}{x^{4}} - \frac{3n^{2}({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)}))ln(x)}{x^{3}} - \frac{3n^{2}{x}^{n}}{x^{3}(x)} + \frac{n^{3}*-3{x}^{n}ln(x)}{x^{4}} + \frac{n^{3}({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)}))ln(x)}{x^{3}} + \frac{n^{3}{x}^{n}}{x^{3}(x)} - \frac{6n*-3{x}^{n}}{x^{4}} - \frac{6n({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)}))}{x^{3}} + \frac{3n^{2}*-3{x}^{n}}{x^{4}} + \frac{3n^{2}({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)}))}{x^{3}} + \frac{2*-3{x}^{n}}{x^{4}} + \frac{2({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)}))}{x^{3}}\\=&\frac{-6n{x}^{n}ln(x)}{x^{4}} + \frac{11n^{2}{x}^{n}ln(x)}{x^{4}} - \frac{6n^{3}{x}^{n}ln(x)}{x^{4}} + \frac{n^{4}{x}^{n}ln(x)}{x^{4}} + \frac{22n{x}^{n}}{x^{4}} - \frac{18n^{2}{x}^{n}}{x^{4}} + \frac{4n^{3}{x}^{n}}{x^{4}} - \frac{6{x}^{n}}{x^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!