本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数2cos(x)sin(x)ln(x) + \frac{{cos(x)}^{2}}{x} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2ln(x)sin(x)cos(x) + \frac{cos^{2}(x)}{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2ln(x)sin(x)cos(x) + \frac{cos^{2}(x)}{x}\right)}{dx}\\=&\frac{2sin(x)cos(x)}{(x)} + 2ln(x)cos(x)cos(x) + 2ln(x)sin(x)*-sin(x) + \frac{-cos^{2}(x)}{x^{2}} + \frac{-2cos(x)sin(x)}{x}\\=&2ln(x)cos^{2}(x) - 2ln(x)sin^{2}(x) - \frac{cos^{2}(x)}{x^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!