本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({2}^{x} - 1)({2}^{(x + 1)} - 1)}{(6x)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{\frac{1}{6} * {2}^{(2x)}}{x} - \frac{\frac{1}{6} * {2}^{x}}{x} - \frac{\frac{1}{6} * {2}^{(x + 1)}}{x} + \frac{\frac{1}{6}}{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{\frac{1}{6} * {2}^{(2x)}}{x} - \frac{\frac{1}{6} * {2}^{x}}{x} - \frac{\frac{1}{6} * {2}^{(x + 1)}}{x} + \frac{\frac{1}{6}}{x}\right)}{dx}\\=&\frac{\frac{1}{6}*-{2}^{(2x)}}{x^{2}} + \frac{\frac{1}{6}({2}^{(2x)}((2)ln(2) + \frac{(2x)(0)}{(2)}))}{x} - \frac{\frac{1}{6}*-{2}^{x}}{x^{2}} - \frac{\frac{1}{6}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))}{x} - \frac{\frac{1}{6}*-{2}^{(x + 1)}}{x^{2}} - \frac{\frac{1}{6}({2}^{(x + 1)}((1 + 0)ln(2) + \frac{(x + 1)(0)}{(2)}))}{x} + \frac{\frac{1}{6}*-1}{x^{2}}\\=&\frac{{2}^{(2x)}ln(2)}{3x} - \frac{{2}^{x}ln(2)}{6x} - \frac{{2}^{(x + 1)}ln(2)}{6x} - \frac{{2}^{(2x)}}{6x^{2}} + \frac{{2}^{(x + 1)}}{6x^{2}} + \frac{{2}^{x}}{6x^{2}} - \frac{1}{6x^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!