本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{x}^{2}}{16} + \frac{sqrt(3){(\frac{(18 - x)}{3})}^{2}}{4} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{36}x^{2}sqrt(3) - xsqrt(3) + \frac{1}{16}x^{2} + 9sqrt(3)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{36}x^{2}sqrt(3) - xsqrt(3) + \frac{1}{16}x^{2} + 9sqrt(3)\right)}{dx}\\=&\frac{1}{36}*2xsqrt(3) + \frac{1}{36}x^{2}*0*\frac{1}{2}*3^{\frac{1}{2}} - sqrt(3) - x*0*\frac{1}{2}*3^{\frac{1}{2}} + \frac{1}{16}*2x + 9*0*\frac{1}{2}*3^{\frac{1}{2}}\\=&\frac{xsqrt(3)}{18} - sqrt(3) + \frac{x}{8}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!