本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(sqrt(\frac{(1 + sin(x))}{(1 - sin(x))})) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(sqrt(\frac{sin(x)}{(-sin(x) + 1)} + \frac{1}{(-sin(x) + 1)}))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(sqrt(\frac{sin(x)}{(-sin(x) + 1)} + \frac{1}{(-sin(x) + 1)}))\right)}{dx}\\=&\frac{((\frac{-(-cos(x) + 0)}{(-sin(x) + 1)^{2}})sin(x) + \frac{cos(x)}{(-sin(x) + 1)} + (\frac{-(-cos(x) + 0)}{(-sin(x) + 1)^{2}}))*\frac{1}{2}}{(sqrt(\frac{sin(x)}{(-sin(x) + 1)} + \frac{1}{(-sin(x) + 1)}))(\frac{sin(x)}{(-sin(x) + 1)} + \frac{1}{(-sin(x) + 1)})^{\frac{1}{2}}}\\=&\frac{sin(x)cos(x)}{2(-sin(x) + 1)^{2}(\frac{sin(x)}{(-sin(x) + 1)} + \frac{1}{(-sin(x) + 1)})^{\frac{1}{2}}sqrt(\frac{sin(x)}{(-sin(x) + 1)} + \frac{1}{(-sin(x) + 1)})} + \frac{cos(x)}{2(-sin(x) + 1)(\frac{sin(x)}{(-sin(x) + 1)} + \frac{1}{(-sin(x) + 1)})^{\frac{1}{2}}sqrt(\frac{sin(x)}{(-sin(x) + 1)} + \frac{1}{(-sin(x) + 1)})} + \frac{cos(x)}{2(-sin(x) + 1)^{2}(\frac{sin(x)}{(-sin(x) + 1)} + \frac{1}{(-sin(x) + 1)})^{\frac{1}{2}}sqrt(\frac{sin(x)}{(-sin(x) + 1)} + \frac{1}{(-sin(x) + 1)})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!