本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(\frac{({(2x + 1)}^{3})}{({(3x - 1)}^{4})}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{8x^{3}}{(3x - 1)^{4}} + \frac{12x^{2}}{(3x - 1)^{4}} + \frac{6x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{8x^{3}}{(3x - 1)^{4}} + \frac{12x^{2}}{(3x - 1)^{4}} + \frac{6x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})\right)}{dx}\\=&\frac{(8(\frac{-4(3 + 0)}{(3x - 1)^{5}})x^{3} + \frac{8*3x^{2}}{(3x - 1)^{4}} + 12(\frac{-4(3 + 0)}{(3x - 1)^{5}})x^{2} + \frac{12*2x}{(3x - 1)^{4}} + 6(\frac{-4(3 + 0)}{(3x - 1)^{5}})x + \frac{6}{(3x - 1)^{4}} + (\frac{-4(3 + 0)}{(3x - 1)^{5}}))}{(\frac{8x^{3}}{(3x - 1)^{4}} + \frac{12x^{2}}{(3x - 1)^{4}} + \frac{6x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})}\\=&\frac{-96x^{3}}{(3x - 1)^{5}(\frac{8x^{3}}{(3x - 1)^{4}} + \frac{12x^{2}}{(3x - 1)^{4}} + \frac{6x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})} + \frac{24x^{2}}{(3x - 1)^{4}(\frac{8x^{3}}{(3x - 1)^{4}} + \frac{12x^{2}}{(3x - 1)^{4}} + \frac{6x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})} - \frac{144x^{2}}{(3x - 1)^{5}(\frac{8x^{3}}{(3x - 1)^{4}} + \frac{12x^{2}}{(3x - 1)^{4}} + \frac{6x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})} + \frac{24x}{(3x - 1)^{4}(\frac{8x^{3}}{(3x - 1)^{4}} + \frac{12x^{2}}{(3x - 1)^{4}} + \frac{6x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})} - \frac{72x}{(3x - 1)^{5}(\frac{8x^{3}}{(3x - 1)^{4}} + \frac{12x^{2}}{(3x - 1)^{4}} + \frac{6x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})} - \frac{12}{(3x - 1)^{5}(\frac{8x^{3}}{(3x - 1)^{4}} + \frac{12x^{2}}{(3x - 1)^{4}} + \frac{6x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})} + \frac{6}{(\frac{8x^{3}}{(3x - 1)^{4}} + \frac{12x^{2}}{(3x - 1)^{4}} + \frac{6x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})(3x - 1)^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!