本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(\frac{({2}^{x} + {53}^{x} + {49069}^{x})}{3})}^{(\frac{3}{x})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{1}{3} * {2}^{x} + \frac{1}{3} * {53}^{x} + \frac{1}{3} * {49069}^{x})^{(\frac{3}{x})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{1}{3} * {2}^{x} + \frac{1}{3} * {53}^{x} + \frac{1}{3} * {49069}^{x})^{(\frac{3}{x})}\right)}{dx}\\=&((\frac{1}{3} * {2}^{x} + \frac{1}{3} * {53}^{x} + \frac{1}{3} * {49069}^{x})^{(\frac{3}{x})}((\frac{3*-1}{x^{2}})ln(\frac{1}{3} * {2}^{x} + \frac{1}{3} * {53}^{x} + \frac{1}{3} * {49069}^{x}) + \frac{(\frac{3}{x})(\frac{1}{3}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})) + \frac{1}{3}({53}^{x}((1)ln(53) + \frac{(x)(0)}{(53)})) + \frac{1}{3}({49069}^{x}((1)ln(49069) + \frac{(x)(0)}{(49069)})))}{(\frac{1}{3} * {2}^{x} + \frac{1}{3} * {53}^{x} + \frac{1}{3} * {49069}^{x})}))\\=&\frac{-3(\frac{1}{3} * {2}^{x} + \frac{1}{3} * {53}^{x} + \frac{1}{3} * {49069}^{x})^{(\frac{3}{x})}ln(\frac{1}{3} * {2}^{x} + \frac{1}{3} * {53}^{x} + \frac{1}{3} * {49069}^{x})}{x^{2}} + \frac{{2}^{x}(\frac{1}{3} * {2}^{x} + \frac{1}{3} * {53}^{x} + \frac{1}{3} * {49069}^{x})^{(\frac{3}{x})}ln(2)}{(\frac{1}{3} * {2}^{x} + \frac{1}{3} * {53}^{x} + \frac{1}{3} * {49069}^{x})x} + \frac{{53}^{x}(\frac{1}{3} * {2}^{x} + \frac{1}{3} * {53}^{x} + \frac{1}{3} * {49069}^{x})^{(\frac{3}{x})}ln(53)}{(\frac{1}{3} * {2}^{x} + \frac{1}{3} * {53}^{x} + \frac{1}{3} * {49069}^{x})x} + \frac{{49069}^{x}(\frac{1}{3} * {2}^{x} + \frac{1}{3} * {53}^{x} + \frac{1}{3} * {49069}^{x})^{(\frac{3}{x})}ln(49069)}{(\frac{1}{3} * {2}^{x} + \frac{1}{3} * {53}^{x} + \frac{1}{3} * {49069}^{x})x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!