本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(\frac{(1 + cos(x))}{(1 - cos(x))})(\frac{1}{4}) + \frac{cos(x)}{2} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{4}ln(\frac{cos(x)}{(-cos(x) + 1)} + \frac{1}{(-cos(x) + 1)}) + \frac{1}{2}cos(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{4}ln(\frac{cos(x)}{(-cos(x) + 1)} + \frac{1}{(-cos(x) + 1)}) + \frac{1}{2}cos(x)\right)}{dx}\\=&\frac{\frac{1}{4}((\frac{-(--sin(x) + 0)}{(-cos(x) + 1)^{2}})cos(x) + \frac{-sin(x)}{(-cos(x) + 1)} + (\frac{-(--sin(x) + 0)}{(-cos(x) + 1)^{2}}))}{(\frac{cos(x)}{(-cos(x) + 1)} + \frac{1}{(-cos(x) + 1)})} + \frac{1}{2}*-sin(x)\\=&\frac{-sin(x)cos(x)}{4(-cos(x) + 1)^{2}(\frac{cos(x)}{(-cos(x) + 1)} + \frac{1}{(-cos(x) + 1)})} - \frac{sin(x)}{4(\frac{cos(x)}{(-cos(x) + 1)} + \frac{1}{(-cos(x) + 1)})(-cos(x) + 1)} - \frac{sin(x)}{4(-cos(x) + 1)^{2}(\frac{cos(x)}{(-cos(x) + 1)} + \frac{1}{(-cos(x) + 1)})} - \frac{sin(x)}{2}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!