本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数8sqrt(5)sqrt((4{x}^{2} + x){\frac{1}{(1 + 5x)}}^{2}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 8sqrt(5)sqrt(\frac{4x^{2}}{(5x + 1)^{2}} + \frac{x}{(5x + 1)^{2}})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 8sqrt(5)sqrt(\frac{4x^{2}}{(5x + 1)^{2}} + \frac{x}{(5x + 1)^{2}})\right)}{dx}\\=&8*0*\frac{1}{2}*5^{\frac{1}{2}}sqrt(\frac{4x^{2}}{(5x + 1)^{2}} + \frac{x}{(5x + 1)^{2}}) + \frac{8sqrt(5)(4(\frac{-2(5 + 0)}{(5x + 1)^{3}})x^{2} + \frac{4*2x}{(5x + 1)^{2}} + (\frac{-2(5 + 0)}{(5x + 1)^{3}})x + \frac{1}{(5x + 1)^{2}})*\frac{1}{2}}{(\frac{4x^{2}}{(5x + 1)^{2}} + \frac{x}{(5x + 1)^{2}})^{\frac{1}{2}}}\\=&\frac{-160x^{2}sqrt(5)}{(5x + 1)^{3}(\frac{4x^{2}}{(5x + 1)^{2}} + \frac{x}{(5x + 1)^{2}})^{\frac{1}{2}}} + \frac{32xsqrt(5)}{(5x + 1)^{2}(\frac{4x^{2}}{(5x + 1)^{2}} + \frac{x}{(5x + 1)^{2}})^{\frac{1}{2}}} - \frac{40xsqrt(5)}{(5x + 1)^{3}(\frac{4x^{2}}{(5x + 1)^{2}} + \frac{x}{(5x + 1)^{2}})^{\frac{1}{2}}} + \frac{4sqrt(5)}{(5x + 1)^{2}(\frac{4x^{2}}{(5x + 1)^{2}} + \frac{x}{(5x + 1)^{2}})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!