本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(\frac{({x}^{8} - 1)}{({x}^{4} - 1)})}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{x^{8}}{(x^{4} - 1)} - \frac{1}{(x^{4} - 1)})^{\frac{1}{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{x^{8}}{(x^{4} - 1)} - \frac{1}{(x^{4} - 1)})^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}((\frac{-(4x^{3} + 0)}{(x^{4} - 1)^{2}})x^{8} + \frac{8x^{7}}{(x^{4} - 1)} - (\frac{-(4x^{3} + 0)}{(x^{4} - 1)^{2}}))}{(\frac{x^{8}}{(x^{4} - 1)} - \frac{1}{(x^{4} - 1)})^{\frac{1}{2}}})\\=&\frac{-2x^{11}}{(\frac{x^{8}}{(x^{4} - 1)} - \frac{1}{(x^{4} - 1)})^{\frac{1}{2}}(x^{4} - 1)^{2}} + \frac{4x^{7}}{(\frac{x^{8}}{(x^{4} - 1)} - \frac{1}{(x^{4} - 1)})^{\frac{1}{2}}(x^{4} - 1)} + \frac{2x^{3}}{(\frac{x^{8}}{(x^{4} - 1)} - \frac{1}{(x^{4} - 1)})^{\frac{1}{2}}(x^{4} - 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!