本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(1 + {x}^{2})}^{5}{(1 - 2{x}^{2})}^{8} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (-2x^{2} + 1)^{8}x^{10} + 5(-2x^{2} + 1)^{8}x^{8} + 10(-2x^{2} + 1)^{8}x^{6} + 10(-2x^{2} + 1)^{8}x^{4} + 5(-2x^{2} + 1)^{8}x^{2} + (-2x^{2} + 1)^{8}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (-2x^{2} + 1)^{8}x^{10} + 5(-2x^{2} + 1)^{8}x^{8} + 10(-2x^{2} + 1)^{8}x^{6} + 10(-2x^{2} + 1)^{8}x^{4} + 5(-2x^{2} + 1)^{8}x^{2} + (-2x^{2} + 1)^{8}\right)}{dx}\\=&(8(-2x^{2} + 1)^{7}(-2*2x + 0))x^{10} + (-2x^{2} + 1)^{8}*10x^{9} + 5(8(-2x^{2} + 1)^{7}(-2*2x + 0))x^{8} + 5(-2x^{2} + 1)^{8}*8x^{7} + 10(8(-2x^{2} + 1)^{7}(-2*2x + 0))x^{6} + 10(-2x^{2} + 1)^{8}*6x^{5} + 10(8(-2x^{2} + 1)^{7}(-2*2x + 0))x^{4} + 10(-2x^{2} + 1)^{8}*4x^{3} + 5(8(-2x^{2} + 1)^{7}(-2*2x + 0))x^{2} + 5(-2x^{2} + 1)^{8}*2x + (8(-2x^{2} + 1)^{7}(-2*2x + 0))\\=&-32(-2x^{2} + 1)^{7}x^{11} + 10(-2x^{2} + 1)^{8}x^{9} - 160(-2x^{2} + 1)^{7}x^{9} + 40(-2x^{2} + 1)^{8}x^{7} - 320(-2x^{2} + 1)^{7}x^{7} + 60(-2x^{2} + 1)^{8}x^{5} - 320(-2x^{2} + 1)^{7}x^{5} + 40(-2x^{2} + 1)^{8}x^{3} - 160(-2x^{2} + 1)^{7}x^{3} + 10(-2x^{2} + 1)^{8}x - 32(-2x^{2} + 1)^{7}x\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!