本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(\frac{1}{2})aa(xsqrt(xx + aa) + ln(sqrt(xx + aa) + x)) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{2}a^{2}xsqrt(x^{2} + a^{2}) + \frac{1}{2}a^{2}ln(sqrt(x^{2} + a^{2}) + x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{2}a^{2}xsqrt(x^{2} + a^{2}) + \frac{1}{2}a^{2}ln(sqrt(x^{2} + a^{2}) + x)\right)}{dx}\\=&\frac{1}{2}a^{2}sqrt(x^{2} + a^{2}) + \frac{\frac{1}{2}a^{2}x(2x + 0)*\frac{1}{2}}{(x^{2} + a^{2})^{\frac{1}{2}}} + \frac{\frac{1}{2}a^{2}(\frac{(2x + 0)*\frac{1}{2}}{(x^{2} + a^{2})^{\frac{1}{2}}} + 1)}{(sqrt(x^{2} + a^{2}) + x)}\\=&\frac{a^{2}sqrt(x^{2} + a^{2})}{2} + \frac{a^{2}x^{2}}{2(x^{2} + a^{2})^{\frac{1}{2}}} + \frac{a^{2}x}{2(sqrt(x^{2} + a^{2}) + x)(x^{2} + a^{2})^{\frac{1}{2}}} + \frac{a^{2}}{2(sqrt(x^{2} + a^{2}) + x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!