本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(\frac{({(1 + x)}^{\frac{1}{2}} - {(1 - x)}^{\frac{1}{2}})}{({(1 + x)}^{\frac{1}{2}} + {(1 - x)}^{\frac{1}{2}})}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{(x + 1)^{\frac{1}{2}}}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})} - \frac{(-x + 1)^{\frac{1}{2}}}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{(x + 1)^{\frac{1}{2}}}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})} - \frac{(-x + 1)^{\frac{1}{2}}}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})})\right)}{dx}\\=&\frac{((\frac{-((\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}}) + (\frac{\frac{1}{2}(-1 + 0)}{(-x + 1)^{\frac{1}{2}}}))}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})^{2}})(x + 1)^{\frac{1}{2}} + \frac{(\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}})}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})} - (\frac{-((\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}}) + (\frac{\frac{1}{2}(-1 + 0)}{(-x + 1)^{\frac{1}{2}}}))}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})^{2}})(-x + 1)^{\frac{1}{2}} - \frac{(\frac{\frac{1}{2}(-1 + 0)}{(-x + 1)^{\frac{1}{2}}})}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})})}{(\frac{(x + 1)^{\frac{1}{2}}}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})} - \frac{(-x + 1)^{\frac{1}{2}}}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})})}\\=&\frac{(x + 1)^{\frac{1}{2}}}{2((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})^{2}(\frac{(x + 1)^{\frac{1}{2}}}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})} - \frac{(-x + 1)^{\frac{1}{2}}}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})})(-x + 1)^{\frac{1}{2}}} + \frac{(-x + 1)^{\frac{1}{2}}}{2((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})^{2}(\frac{(x + 1)^{\frac{1}{2}}}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})} - \frac{(-x + 1)^{\frac{1}{2}}}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})})(x + 1)^{\frac{1}{2}}} + \frac{1}{2(\frac{(x + 1)^{\frac{1}{2}}}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})} - \frac{(-x + 1)^{\frac{1}{2}}}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})})(x + 1)^{\frac{1}{2}}((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})} + \frac{1}{2(\frac{(x + 1)^{\frac{1}{2}}}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})} - \frac{(-x + 1)^{\frac{1}{2}}}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})})(-x + 1)^{\frac{1}{2}}((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})} - \frac{1}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})^{2}(\frac{(x + 1)^{\frac{1}{2}}}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})} - \frac{(-x + 1)^{\frac{1}{2}}}{((x + 1)^{\frac{1}{2}} + (-x + 1)^{\frac{1}{2}})})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!