本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{e}^{x}sin(2)x 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x{e}^{x}sin(2)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x{e}^{x}sin(2)\right)}{dx}\\=&{e}^{x}sin(2) + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(2) + x{e}^{x}cos(2)*0\\=&{e}^{x}sin(2) + x{e}^{x}sin(2)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {e}^{x}sin(2) + x{e}^{x}sin(2)\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(2) + {e}^{x}cos(2)*0 + {e}^{x}sin(2) + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(2) + x{e}^{x}cos(2)*0\\=&2{e}^{x}sin(2) + x{e}^{x}sin(2)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 2{e}^{x}sin(2) + x{e}^{x}sin(2)\right)}{dx}\\=&2({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(2) + 2{e}^{x}cos(2)*0 + {e}^{x}sin(2) + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(2) + x{e}^{x}cos(2)*0\\=&3{e}^{x}sin(2) + x{e}^{x}sin(2)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 3{e}^{x}sin(2) + x{e}^{x}sin(2)\right)}{dx}\\=&3({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(2) + 3{e}^{x}cos(2)*0 + {e}^{x}sin(2) + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(2) + x{e}^{x}cos(2)*0\\=&4{e}^{x}sin(2) + x{e}^{x}sin(2)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!