本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数tan({e}^{({x}^{2} + 16tan(sin({e}^{2}x)))}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = tan({e}^{(x^{2} + 16tan(sin(xe^{2})))})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( tan({e}^{(x^{2} + 16tan(sin(xe^{2})))})\right)}{dx}\\=&sec^{2}({e}^{(x^{2} + 16tan(sin(xe^{2})))})(({e}^{(x^{2} + 16tan(sin(xe^{2})))}((2x + 16sec^{2}(sin(xe^{2}))(cos(xe^{2})(e^{2} + x*2e*0)))ln(e) + \frac{(x^{2} + 16tan(sin(xe^{2})))(0)}{(e)})))\\=&2x{e}^{(x^{2} + 16tan(sin(xe^{2})))}sec^{2}({e}^{(x^{2} + 16tan(sin(xe^{2})))}) + 16{e}^{(x^{2} + 16tan(sin(xe^{2})))}e^{2}cos(xe^{2})sec^{2}(sin(xe^{2}))sec^{2}({e}^{(x^{2} + 16tan(sin(xe^{2})))})\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!