本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(-0.066ln(x) + 0.5749)}{(30.757ln(x) - 116.09)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-0.066ln(x)}{(30.757ln(x) - 116.09)} + \frac{0.5749}{(30.757ln(x) - 116.09)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-0.066ln(x)}{(30.757ln(x) - 116.09)} + \frac{0.5749}{(30.757ln(x) - 116.09)}\right)}{dx}\\=&-0.066(\frac{-(\frac{30.757}{(x)} + 0)}{(30.757ln(x) - 116.09)^{2}})ln(x) - \frac{0.066}{(30.757ln(x) - 116.09)(x)} + 0.5749(\frac{-(\frac{30.757}{(x)} + 0)}{(30.757ln(x) - 116.09)^{2}})\\=&\frac{2.029962ln(x)}{(30.757ln(x) - 116.09)(30.757ln(x) - 116.09)x} - \frac{0.066}{(30.757ln(x) - 116.09)x} - \frac{17.6821993}{(30.757ln(x) - 116.09)(30.757ln(x) - 116.09)x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!