本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln({(2t + 1)}^{5}{\frac{1}{(3t - 1)}}^{4}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{32t^{5}}{(3t - 1)^{4}} + \frac{80t^{4}}{(3t - 1)^{4}} + \frac{80t^{3}}{(3t - 1)^{4}} + \frac{40t^{2}}{(3t - 1)^{4}} + \frac{10t}{(3t - 1)^{4}} + \frac{1}{(3t - 1)^{4}})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{32t^{5}}{(3t - 1)^{4}} + \frac{80t^{4}}{(3t - 1)^{4}} + \frac{80t^{3}}{(3t - 1)^{4}} + \frac{40t^{2}}{(3t - 1)^{4}} + \frac{10t}{(3t - 1)^{4}} + \frac{1}{(3t - 1)^{4}})\right)}{dx}\\=&\frac{(32(\frac{-4(0 + 0)}{(3t - 1)^{5}})t^{5} + 0 + 80(\frac{-4(0 + 0)}{(3t - 1)^{5}})t^{4} + 0 + 80(\frac{-4(0 + 0)}{(3t - 1)^{5}})t^{3} + 0 + 40(\frac{-4(0 + 0)}{(3t - 1)^{5}})t^{2} + 0 + 10(\frac{-4(0 + 0)}{(3t - 1)^{5}})t + 0 + (\frac{-4(0 + 0)}{(3t - 1)^{5}}))}{(\frac{32t^{5}}{(3t - 1)^{4}} + \frac{80t^{4}}{(3t - 1)^{4}} + \frac{80t^{3}}{(3t - 1)^{4}} + \frac{40t^{2}}{(3t - 1)^{4}} + \frac{10t}{(3t - 1)^{4}} + \frac{1}{(3t - 1)^{4}})}\\=& - 0\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!