本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(cos(x))}^{2}xln(x) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = xln(x)cos^{2}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( xln(x)cos^{2}(x)\right)}{dx}\\=&ln(x)cos^{2}(x) + \frac{xcos^{2}(x)}{(x)} + xln(x)*-2cos(x)sin(x)\\=&ln(x)cos^{2}(x) + cos^{2}(x) - 2xln(x)sin(x)cos(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( ln(x)cos^{2}(x) + cos^{2}(x) - 2xln(x)sin(x)cos(x)\right)}{dx}\\=&\frac{cos^{2}(x)}{(x)} + ln(x)*-2cos(x)sin(x) + -2cos(x)sin(x) - 2ln(x)sin(x)cos(x) - \frac{2xsin(x)cos(x)}{(x)} - 2xln(x)cos(x)cos(x) - 2xln(x)sin(x)*-sin(x)\\=&\frac{cos^{2}(x)}{x} - 4ln(x)sin(x)cos(x) - 4sin(x)cos(x) - 2xln(x)cos^{2}(x) + 2xln(x)sin^{2}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!