本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(3sin(x) + 2cos(x) - 5)}^{3} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 54sin^{2}(x)cos(x) + 36sin(x)cos^{2}(x) - 180sin(x)cos(x) - 135sin^{2}(x) + 27sin^{3}(x) + 8cos^{3}(x) - 60cos^{2}(x) + 225sin(x) + 150cos(x) - 125\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 54sin^{2}(x)cos(x) + 36sin(x)cos^{2}(x) - 180sin(x)cos(x) - 135sin^{2}(x) + 27sin^{3}(x) + 8cos^{3}(x) - 60cos^{2}(x) + 225sin(x) + 150cos(x) - 125\right)}{dx}\\=&54*2sin(x)cos(x)cos(x) + 54sin^{2}(x)*-sin(x) + 36cos(x)cos^{2}(x) + 36sin(x)*-2cos(x)sin(x) - 180cos(x)cos(x) - 180sin(x)*-sin(x) - 135*2sin(x)cos(x) + 27*3sin^{2}(x)cos(x) + 8*-3cos^{2}(x)sin(x) - 60*-2cos(x)sin(x) + 225cos(x) + 150*-sin(x) + 0\\=&84sin(x)cos^{2}(x) + 9sin^{2}(x)cos(x) + 36cos^{3}(x) - 150sin(x)cos(x) - 180cos^{2}(x) + 180sin^{2}(x) - 54sin^{3}(x) + 225cos(x) - 150sin(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!