本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{((x - 1){e}^{arctan(x)})}{(2{(1 + {x}^{2})}^{\frac{1}{2}})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{\frac{1}{2}x{e}^{arctan(x)}}{(x^{2} + 1)^{\frac{1}{2}}} - \frac{\frac{1}{2}{e}^{arctan(x)}}{(x^{2} + 1)^{\frac{1}{2}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{\frac{1}{2}x{e}^{arctan(x)}}{(x^{2} + 1)^{\frac{1}{2}}} - \frac{\frac{1}{2}{e}^{arctan(x)}}{(x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{1}{2}(\frac{\frac{-1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{3}{2}}})x{e}^{arctan(x)} + \frac{\frac{1}{2}{e}^{arctan(x)}}{(x^{2} + 1)^{\frac{1}{2}}} + \frac{\frac{1}{2}x({e}^{arctan(x)}(((\frac{(1)}{(1 + (x)^{2})}))ln(e) + \frac{(arctan(x))(0)}{(e)}))}{(x^{2} + 1)^{\frac{1}{2}}} - \frac{1}{2}(\frac{\frac{-1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{3}{2}}}){e}^{arctan(x)} - \frac{\frac{1}{2}({e}^{arctan(x)}(((\frac{(1)}{(1 + (x)^{2})}))ln(e) + \frac{(arctan(x))(0)}{(e)}))}{(x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{-x^{2}{e}^{arctan(x)}}{2(x^{2} + 1)^{\frac{3}{2}}} + \frac{{e}^{arctan(x)}}{2(x^{2} + 1)^{\frac{1}{2}}} + \frac{x{e}^{arctan(x)}}{(x^{2} + 1)^{\frac{3}{2}}} - \frac{{e}^{arctan(x)}}{2(x^{2} + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!