本次共计算 1 个题目:每一题对 k 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(\frac{(bs + m(n + k + t) + ms - 1)}{(mbs(n + k + t))}) 关于 k 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(\frac{bs}{(bsmn + bsmk + bsmt)} + \frac{mn}{(bsmn + bsmk + bsmt)} + \frac{mk}{(bsmn + bsmk + bsmt)} + \frac{mt}{(bsmn + bsmk + bsmt)} + \frac{sm}{(bsmn + bsmk + bsmt)} - \frac{1}{(bsmn + bsmk + bsmt)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(\frac{bs}{(bsmn + bsmk + bsmt)} + \frac{mn}{(bsmn + bsmk + bsmt)} + \frac{mk}{(bsmn + bsmk + bsmt)} + \frac{mt}{(bsmn + bsmk + bsmt)} + \frac{sm}{(bsmn + bsmk + bsmt)} - \frac{1}{(bsmn + bsmk + bsmt)})\right)}{dk}\\=&\frac{((\frac{-(0 + bsm + 0)}{(bsmn + bsmk + bsmt)^{2}})bs + 0 + (\frac{-(0 + bsm + 0)}{(bsmn + bsmk + bsmt)^{2}})mn + 0 + (\frac{-(0 + bsm + 0)}{(bsmn + bsmk + bsmt)^{2}})mk + \frac{m}{(bsmn + bsmk + bsmt)} + (\frac{-(0 + bsm + 0)}{(bsmn + bsmk + bsmt)^{2}})mt + 0 + (\frac{-(0 + bsm + 0)}{(bsmn + bsmk + bsmt)^{2}})sm + 0 - (\frac{-(0 + bsm + 0)}{(bsmn + bsmk + bsmt)^{2}}))*\frac{1}{2}}{(\frac{bs}{(bsmn + bsmk + bsmt)} + \frac{mn}{(bsmn + bsmk + bsmt)} + \frac{mk}{(bsmn + bsmk + bsmt)} + \frac{mt}{(bsmn + bsmk + bsmt)} + \frac{sm}{(bsmn + bsmk + bsmt)} - \frac{1}{(bsmn + bsmk + bsmt)})^{\frac{1}{2}}}\\=&\frac{-bsm^{2}n}{2(bsmn + bsmk + bsmt)^{2}(\frac{bs}{(bsmn + bsmk + bsmt)} + \frac{mn}{(bsmn + bsmk + bsmt)} + \frac{mk}{(bsmn + bsmk + bsmt)} + \frac{mt}{(bsmn + bsmk + bsmt)} + \frac{sm}{(bsmn + bsmk + bsmt)} - \frac{1}{(bsmn + bsmk + bsmt)})^{\frac{1}{2}}} - \frac{bsm^{2}k}{2(bsmn + bsmk + bsmt)^{2}(\frac{bs}{(bsmn + bsmk + bsmt)} + \frac{mn}{(bsmn + bsmk + bsmt)} + \frac{mk}{(bsmn + bsmk + bsmt)} + \frac{mt}{(bsmn + bsmk + bsmt)} + \frac{sm}{(bsmn + bsmk + bsmt)} - \frac{1}{(bsmn + bsmk + bsmt)})^{\frac{1}{2}}} - \frac{bsm^{2}t}{2(bsmn + bsmk + bsmt)^{2}(\frac{bs}{(bsmn + bsmk + bsmt)} + \frac{mn}{(bsmn + bsmk + bsmt)} + \frac{mk}{(bsmn + bsmk + bsmt)} + \frac{mt}{(bsmn + bsmk + bsmt)} + \frac{sm}{(bsmn + bsmk + bsmt)} - \frac{1}{(bsmn + bsmk + bsmt)})^{\frac{1}{2}}} + \frac{m}{2(bsmn + bsmk + bsmt)(\frac{bs}{(bsmn + bsmk + bsmt)} + \frac{mn}{(bsmn + bsmk + bsmt)} + \frac{mk}{(bsmn + bsmk + bsmt)} + \frac{mt}{(bsmn + bsmk + bsmt)} + \frac{sm}{(bsmn + bsmk + bsmt)} - \frac{1}{(bsmn + bsmk + bsmt)})^{\frac{1}{2}}} - \frac{b^{2}s^{2}m}{2(bsmn + bsmk + bsmt)^{2}(\frac{bs}{(bsmn + bsmk + bsmt)} + \frac{mn}{(bsmn + bsmk + bsmt)} + \frac{mk}{(bsmn + bsmk + bsmt)} + \frac{mt}{(bsmn + bsmk + bsmt)} + \frac{sm}{(bsmn + bsmk + bsmt)} - \frac{1}{(bsmn + bsmk + bsmt)})^{\frac{1}{2}}} - \frac{bs^{2}m^{2}}{2(bsmn + bsmk + bsmt)^{2}(\frac{bs}{(bsmn + bsmk + bsmt)} + \frac{mn}{(bsmn + bsmk + bsmt)} + \frac{mk}{(bsmn + bsmk + bsmt)} + \frac{mt}{(bsmn + bsmk + bsmt)} + \frac{sm}{(bsmn + bsmk + bsmt)} - \frac{1}{(bsmn + bsmk + bsmt)})^{\frac{1}{2}}} + \frac{bsm}{2(bsmn + bsmk + bsmt)^{2}(\frac{bs}{(bsmn + bsmk + bsmt)} + \frac{mn}{(bsmn + bsmk + bsmt)} + \frac{mk}{(bsmn + bsmk + bsmt)} + \frac{mt}{(bsmn + bsmk + bsmt)} + \frac{sm}{(bsmn + bsmk + bsmt)} - \frac{1}{(bsmn + bsmk + bsmt)})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!