本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(1 - sqr(1 - cos(x)))(sqr(1 + x) - 1)}{x} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{s^{2}q^{2}r^{2}cos(x)}{x} - \frac{sqrcos(x)}{x} - \frac{1}{x} + \frac{2sqr}{x} + s^{2}q^{2}r^{2}cos(x) - \frac{s^{2}q^{2}r^{2}}{x} - s^{2}q^{2}r^{2} + sqr\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{s^{2}q^{2}r^{2}cos(x)}{x} - \frac{sqrcos(x)}{x} - \frac{1}{x} + \frac{2sqr}{x} + s^{2}q^{2}r^{2}cos(x) - \frac{s^{2}q^{2}r^{2}}{x} - s^{2}q^{2}r^{2} + sqr\right)}{dx}\\=&\frac{s^{2}q^{2}r^{2}*-cos(x)}{x^{2}} + \frac{s^{2}q^{2}r^{2}*-sin(x)}{x} - \frac{sqr*-cos(x)}{x^{2}} - \frac{sqr*-sin(x)}{x} - \frac{-1}{x^{2}} + \frac{2sqr*-1}{x^{2}} + s^{2}q^{2}r^{2}*-sin(x) - \frac{s^{2}q^{2}r^{2}*-1}{x^{2}} + 0 + 0\\=&\frac{-s^{2}q^{2}r^{2}cos(x)}{x^{2}} - \frac{s^{2}q^{2}r^{2}sin(x)}{x} + \frac{sqrcos(x)}{x^{2}} + \frac{sqrsin(x)}{x} + \frac{1}{x^{2}} - \frac{2sqr}{x^{2}} - s^{2}q^{2}r^{2}sin(x) + \frac{s^{2}q^{2}r^{2}}{x^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!