本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(1 + {(ln(x))}^{2})}{(xsqrt(1 - {x}^{2}))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{xsqrt(-x^{2} + 1)} + \frac{ln^{2}(x)}{xsqrt(-x^{2} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{xsqrt(-x^{2} + 1)} + \frac{ln^{2}(x)}{xsqrt(-x^{2} + 1)}\right)}{dx}\\=&\frac{-1}{x^{2}sqrt(-x^{2} + 1)} + \frac{-(-2x + 0)*\frac{1}{2}}{x(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}} + \frac{-ln^{2}(x)}{x^{2}sqrt(-x^{2} + 1)} + \frac{2ln(x)}{x(x)sqrt(-x^{2} + 1)} + \frac{ln^{2}(x)*-(-2x + 0)*\frac{1}{2}}{x(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{-1}{x^{2}sqrt(-x^{2} + 1)} + \frac{ln^{2}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} - \frac{ln^{2}(x)}{x^{2}sqrt(-x^{2} + 1)} + \frac{2ln(x)}{x^{2}sqrt(-x^{2} + 1)} + \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!