本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{xsqrt(aa - xx)}{2} + \frac{(aa)arctan(\frac{x}{a})}{2} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{2}xsqrt(a^{2} - x^{2}) + \frac{1}{2}a^{2}arctan(\frac{x}{a})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{2}xsqrt(a^{2} - x^{2}) + \frac{1}{2}a^{2}arctan(\frac{x}{a})\right)}{dx}\\=&\frac{1}{2}sqrt(a^{2} - x^{2}) + \frac{\frac{1}{2}x(0 - 2x)*\frac{1}{2}}{(a^{2} - x^{2})^{\frac{1}{2}}} + \frac{1}{2}a^{2}(\frac{(\frac{1}{a})}{(1 + (\frac{x}{a})^{2})})\\=&\frac{sqrt(a^{2} - x^{2})}{2} - \frac{x^{2}}{2(a^{2} - x^{2})^{\frac{1}{2}}} + \frac{a}{2(\frac{x^{2}}{a^{2}} + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!