本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{ln(\frac{(x + 2)}{(x - 3)})}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln^{\frac{1}{2}}(\frac{x}{(x - 3)} + \frac{2}{(x - 3)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln^{\frac{1}{2}}(\frac{x}{(x - 3)} + \frac{2}{(x - 3)})\right)}{dx}\\=&\frac{\frac{1}{2}((\frac{-(1 + 0)}{(x - 3)^{2}})x + \frac{1}{(x - 3)} + 2(\frac{-(1 + 0)}{(x - 3)^{2}}))}{ln^{\frac{1}{2}}(\frac{x}{(x - 3)} + \frac{2}{(x - 3)})(\frac{x}{(x - 3)} + \frac{2}{(x - 3)})}\\=&\frac{-x}{2(x - 3)^{2}(\frac{x}{(x - 3)} + \frac{2}{(x - 3)})ln^{\frac{1}{2}}(\frac{x}{(x - 3)} + \frac{2}{(x - 3)})} + \frac{1}{2(\frac{x}{(x - 3)} + \frac{2}{(x - 3)})(x - 3)ln^{\frac{1}{2}}(\frac{x}{(x - 3)} + \frac{2}{(x - 3)})} - \frac{1}{(x - 3)^{2}(\frac{x}{(x - 3)} + \frac{2}{(x - 3)})ln^{\frac{1}{2}}(\frac{x}{(x - 3)} + \frac{2}{(x - 3)})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!